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Three-dimensional (3D) shape perception is one of the most im-
portant functions of vision. It is crucial for many tasks, from object
recognition to tool use, and yet how the brain represents shape
remains poorly understood. Most theories focus on purely geo-
metrical computations (e.g., estimating depths, curvatures, sym-
metries). Here, however, we find that shape perception also
involves sophisticated inferences that parse shapes into features
with distinct causal origins. Inspired by marble sculptures such as
Strazza’s The Veiled Virgin (1850), which vividly depict figures
swathed in cloth, we created composite shapes by wrapping un-
familiar forms in textile, so that the observable surface relief was
the result of complex interactions between the underlying object
and overlying fabric. Making sense of such structures requires
segmenting the shape based on their causes, to distinguish
whether lumps and ridges are due to the shrouded object or to
the ripples and folds of the overlying cloth. Three-dimensional
scans of the objects with and without the textile provided
ground-truth measures of the true physical surface reliefs, against
which observers’ judgments could be compared. In a virtual paint-
ing task, participants indicated which surface ridges appeared to
be caused by the hidden object and which were due to the drap-
ery. In another experiment, participants indicated the perceived
depth profile of both surface layers. Their responses reveal that
they can robustly distinguish features belonging to the textile
from those due to the underlying object. Together, these findings
reveal the operation of visual shape-segmentation processes that
parse shapes based on their causal origin.
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In the 19th century, a movement emerged in sculpture that
prized the depiction of figures whelmed or draped in different

kinds of cloth. A canonical example of such work is Giovanni
Strazza’s The Veiled Virgin (approximately 1850; Fig. 1). Hewn
from a solid block of Carrara marble, the sculpture vividly de-
picts the Virgin’s face beneath a diaphanous veil. From the point
of view of artistic craftsmanship, such works allowed the sculptor
to display their virtuosity by subtly rendering different material
properties. For example, in this case, the delicate purity of the
Madonna’s complexion is enhanced by juxtaposing it with the
immaculate, almost weightless transparent textile. However,
from a scientific point of view, such sculptures are not only
beautiful; they also raise profound questions about the nature of
visual representations of surface shape and material properties
(1, 2). As the sculpture consists of a single lump of solid, ho-
mogeneous material, how is it that we perceive multiple super-
imposed surfaces, with distinct shapes and material properties?
Every visible point on the surface is just marble, and yet,
somehow, we perceive one shape behind, or inside another, ef-
fortlessly distinguishing the shape features that belong to the
Virgin’s face from those that belong to the overlying fabric. This
suggests that the visual system may decompose the observed,
composite shape into multiple “casual layers” (3–5), a process
that we call “shape scission” (6, 7). At the very least, we seem to

be able to identify that different three-dimensional (3D) shape
features have distinct causal history, as has been suggested pre-
viously for two-dimensional (2D) shapes (8–16). We sought to
measure and understand this phenomenon.

Results and Discussion
Experiment 1: High Intersubject Agreement about Causation in The
Veiled Virgin Sculpture. We reasoned that if the visual system can
segment shape features based on their causal origin, participants
should be able to indicate the apparent causes of different
structures in the sculpture. To test this, we presented 40 un-
trained observers with images of The Veiled Virgin on a tablet
device and asked them to paint onto the picture to indicate
geometrical features caused predominantly by the underlying
face (“contact”) and those caused predominantly by the over-
lying textile (“fabric”). Participants could toggle back and forth
between two separate screens, one for each of the two phe-
nomenological “layers.” The mean responses across participants
for one such stimulus are shown in Fig. 1 (see SI Appendix, Fig.
S1 for all stimuli). Blue areas denote regions indicated as being
in contact with the underlying surface. Orange areas indicate
regions indicated as being above the underlying surface. The
responses show that, on average, participants distinguished very
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clearly between the two types of features; visual inspection sug-
gests that participants very carefully teased features apart
depending on their causal origin.
As a more formal test of the internal consistency of partici-

pants’ settings across the two causes, we devised two measures:
“profligacy,” describing participants’ willingness to mark pixels in
either of the two maps; and “decisiveness,” which measures the
extent to which markings in the two maps were mutually exclu-
sive (see Materials and Methods for definitions). We reasoned
that if participants distinguish between causes, then pixels that
are labeled as being due to one cause should not also be labeled
as being due to the other. For example, if a ridge is due to the
nose (contact), it cannot also be due to the textile rippling under
its own self-organizing internal properties (fabric). Fig. 1D
summarizes the distribution of profligacy and decisiveness across
all markings from all participants.
It is useful to consider the intimately interconnected nature of

these measures, as revealed by the pronounced negative re-
lationship between them. When there are very few markings
(i.e., low profligacy), the two sets of markings will tend not to
overlap—even if generated at random—yielding high values of
decisiveness. To appreciate this, consider the extreme case where
participants indicate just a single pixel per layer: the probability
of overlap is negligible. In contrast, if participants marked more
than half the pixels in both layers, overlap would be inevitable,
yielding lower decisiveness values.
Thus, to test whether participants’ settings were more decisive

than would be expected by chance given the total number of
markings they made, we ran a bootstrapping simulation with
10,000 repetitions, in which random (white noise) markings were
created independently for pairs of contact and fabrics maps,
based on the participants’ profligacy. For each simulated pair of

maps, we computed the resulting decisiveness. The bootstrapping
simulation was performed with the marking responses of each
observer independently, facilitating within-observer comparison
between the simulation and the actual responses. This analysis
allows us to characterize decisiveness across participants that
ranged substantially in how parsimonious or profligate they were
with their markings. A within-subject paired comparison t test
reveals that observers’ distributions are significantly more decisive
than their corresponding simulations—36 of 40 participants
showed significant differences between simulated and actual
markings (P < 0.05), and 34 of 40 were significant with P < 0.01.
This indicates that participants are highly internally consistent
when distinguishing the causal origin of features in the statue.

Experiment 2: Causal Assignment of Features on Unfamiliar Objects.
The responses to The Veiled Virgin sculpture provide a first hint
that observers can visually distinguish the causal origin of geo-
metrical features. However, there are a number of important
limitations with the use of such sculptures to investigate causal
segmentation. First, because the underlying shape is a face, some
of the observers’ success may be due to recognizing familiar
features such as the nose, cheeks, or eyes, rather than a more
general-purpose segmentation process. Second, we do not know
what the true shape of the two constituent layers is, so we can
only compare participants’ responses with one another and not
with the “ground truth.” Third, careful inspection of the sculp-
ture, and our attempts to recreate similar shapes by draping di-
aphanous tissues over real people’s faces, revealed that the
shapes carved by the sculptor are not a faithful reproduction of
the geometry of the draped textile. Instead, to convey the textile
as transparent, the artist created a very specific type of composite
that is quite unlike the geometry that results from real drapery.

B

A

D

C

Subjects
Bootstrap

Fig. 1. (A) Strazza’s sculpture The Veiled Virgin (approximately 1850), which elicits a vivid impression of a face “seen through” an overlying diaphanous veil
(image: Wanita Bates, Presentation Archives). (B) Experiment 1: mean responses from 40 participants for one stimulus from the virtual painting task. Blue
indicates contact responses; yellow indicates fabric responses (see SI Appendix, Fig. S1 for all stimuli). (C) The same data superimposed on stimulus image. (D)
Profligacy and decisiveness of participants responses (see Materials and Methods for definitions). Green indicates mean responses for individual participants.
Red indicates bootstrapped measurements for each participant.
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Specifically, his depiction alternates over space between rendering
the shape of the overlying surface, as observed directly, and the
underlying face as if it were in plain view (i.e., unobscured by the
cloth). This can be seen clearly, for example, in the eye, which is
rendered as if unobscured almost everywhere but with narrow
ridges depicting the drapery. (See stimulus 4 in SI Appendix, Fig.
S1 as an example.) Undoubtedly, great skill was required to make
these selections and to execute the transitions between them in
such a way as to elicit the impression of a cloth extending con-
tinuously over the face, rather than a patchy appearance of a cloth
with holes in it, or a face with stalactite-like accretions. Indeed,
understanding how these geometrical features elicit a subjective
impression of transparency in the absence of the cues, such as
X-junctions, that are normally required for perceptual trans-
parency (3, 17–21) is a fascinating research question in its own
right. Nevertheless, for the purposes of investigating how the vi-
sual system segments shapes by way of distinct causes, the artist’s
technique of spatially alternating between overlying and un-
derlying layers is problematic. For our purposes, we need images
in which the two layers are superimposed, not side by side.
To overcome these limitations, we created our own draped

objects. The three underlying surfaces (“base shapes,” labeled A
to C) consisted of unfamiliar reliefs, roughly 50 to 100 cm wide,
made of cardboard and, in two of the three cases (base shapes A
and B), chicken wire that was tightly coated in aluminum foil.
These were digitized with a 3D scanner and then draped with
cloth and scanned again so that we had ground-truth geometry
for both underlying and overlying layers. Each base shape was
draped multiple times (labeled with numbered values; e.g.,
stimulus A3 refers to the third draping of base shape A). The
resulting 3D scans were rendered under naturalistic lighting (22)
as ideal opaque Lambertian surfaces (Fig. 2). Rendering, rather
than the use of photographs, enabled precise control of view-
point and lighting, accurate coregistration of depth data with
pixel data, and the use of ideal opaque surface reflectance to
ensure the underlying surface was truly invisible to the observer.
We presented these renderings to a new set of 69 participants in
random order with similar instructions to those used with The
Veiled Virgin sculpture (i.e., to mark ridges due to contact and
fabric). For comparison, participants were also asked to mark
ridges on images of the undraped underlying reliefs (36 partici-
pants did this before seeing the draped versions of the objects;
the others did it afterward).

Participants’ Judgments Are Highly Consistent. Mean responses
across participants for one example draping is depicted in Fig. 3
(see SI Appendix, Fig. S2 for the complete set). We again eval-
uated the extent to which participants were internally consistent
in attributing causes to each location by comparing the profligacy
and decisiveness metrics with random responses. This analysis
reveals that participants are significantly and substantially more
decisive than would occur by chance. Participants’markings were
also highly consistent with one another; the mean correlation

between maps produced by different observers for each stimulus
was r = 0.52. We based our further analyses on the mean re-
sponses across participants (“mean maps”). As with the previous
experiment, a within-subject paired comparison t test reveals that
the observers’ distributions are significantly more decisive than
their corresponding simulations: 66 of 68 participants showed
significant differences between simulated and actual markings
(P < 0.05), and 58 of 68 were significant with P < 0.01.

Contact Responses Are Clustered by Base Shape. It is also interesting
to consider how accurately participants could identify the causes
of features. We can use the fact that we created multiple drap-
ings of each base shape to test whether participants could cor-
rectly distinguish between contact and fabric. If they could, then
fabric markings for different drapings on the same base shape
should be quite different from one another, while contact
markings should be quite similar. To test this, we calculated the
correlation between the mean maps for fabric and contact re-
sponses for each stimulus (Fig. 4). Applying multidimensional
scaling (MDS) to the resulting similarity matrices reveals a dis-
orderly arrangement for the fabric responses but a clear clus-
tering by base shape for the contact settings. In other words,
participants marked similar features when indicating the un-
derlying surface, despite large variations in the visible shape,
caused by the drapery. This strongly indicates that participants
could indeed distinguish between features that were due to the
base shape and those that were due to the textile’s own ripples
and folds on top.

Object-To-Textile Depth Differences for Fabric and Contact Markings.
As another test of accuracy, we took advantage of the fact that
we had ground-truth depth data for both the overlying textile and
the underlying surface. We computed for each pixel, the differ-
ence in 3D depth between the scans of the textile and base shape
(“depth difference”) and compared these to participants’ re-
sponses. If participants perform the task accurately, we should
expect the mean depth differences to be significantly smaller for
contact than for fabric markings. Fig. 4 shows the mean depth
difference within contact and fabric markings for each stimulus,
weighted by the number of responses per pixel. All but one of the
stimuli fall above the diagonal, indicating larger depth differ-
ences for the fabric than contact markings. This suggests that
participants are broadly capable of separating shape features
based on their causal origin.

Predicting Causal Assignments. Identifying which visual cues par-
ticipants use to determine the causal origin of shape features is
extremely challenging as the physics of textile is complex, and we
carefully designed our stimuli so that the two causes led to
similar geometrical structures. In a given stimulus (e.g., B3; SI
Appendix, Fig. S2) fabric ridges might be smaller, flatter, and
straighter than the contact features. However, in other stimuli
(e.g., C5; Fig. 3), the tendency is reversed, precluding classifi-
cation based any single simple cue. Nevertheless, we reasoned

Fig. 2. (A) Cross-section of 3D scan of stimulus A1, i.e., the first draping of base shape A. (B) Renderings of the three base shapes A to C (left to right), as
presented in Experiment 2. (C) Renderings of example drapings of the three base objects, as used in Experiment 2 (from left to right: A2, B4, C1). For the
complete stimulus set, see SI Appendix, Fig. S2.
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that the participants’ markings might be distinguished by a combi-
nation of multiple features, taking both the 2D and 3D properties
into account.
To test this, we sought to predict the causal assignment of

regions (i.e., whether participants assigned a given set of pixels to

contact or fabric maps) by training a classifier based on 2D and
3D features derived from the ground-truth geometry and the
participants’ markings. Specifically, we first thresholded and
segmented the mean responses for each stimulus to identify re-
gions that were most consistently marked across participants,

B C

A

Fig. 3. (A) Experiment 2: mean responses from 68 participants on stimulus C5. Blue indicates contact; yellow indicates fabric. (B) Data superimposed on the
original image (see SI Appendix, Fig. S2 for all stimuli). (C) Profligacy and decisiveness of participants’ responses (see Materials and Methods for definitions).
Green dots indicate responses for individual participants. Red dots indicate results of bootstrapping with random responses, statistically matched to individual
participant data.
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Fig. 4. Label colors correspond to the three different underlying surfaces (cyan: A; yellow: B; green: C). (A) Correlations between the fabric maps for all
stimuli revealing that participants’ responses were dominated by the differences between drapings. (B) Application of MDS to the correlation matrix reveals a
disorderly arrangement in 2D, again reflecting differences in the shape of the fabric across stimuli. (C) Correlations between the contact maps for all stimuli,
revealing greater similarities between stimuli that share the same base shapes. (D) Applying MDS to the correlation matrix reveals clear clustering in 2D MDS
space. (E) Mean physical depth difference between textile and base shape for fabric and contact markings. Most points are above the diagonal, indicating
larger depth offsets for fabric responses than for contact responses. (F) Ranking and selection of features in SVM classifier model: bars indicate magnitude of
difference in mean of normalized feature values; color indicates sign (orange: fabric > contact; blue: contact > fabric). Transparency indicates features not
used in SVM classifier. (G) SVM classifier predictions of causal assignment for all 154 segmented image regions. Coordinates are 2D tSNE visualization of each
region in seven-dimensional (7D) feature space used for classification (orange: predicted fabric; blue: predicted contact; gray rings: incorrect predictions). (H)
Predicted causal assignments of image regions for one stimulus (see SI Appendix, Fig. S2 for all stimuli) (orange: predicted fabric; blue: predicted contact).
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yielding 154 regions across 12 stimuli. Then, for each region, we
computed 24 different features describing the size, shape, ori-
entation, and depth structure of the region (see Materials and
Methods for the complete feature list). We ranked the features
for informativeness by measuring the difference in mean of the
distributions of normalized features values from contact and
fabric regions (Fig. 4F). This revealed that 1) each feature in
isolation is a relatively poor predictor of causal origin (the
maximum difference was <16% of the total range of values); 2)
the three most informative features (mean depth, SD of depth,
and mean depth difference between overlying and underlying
surface) were all related to the 3D structure, rather than 2D
properties of the regions; and 3) contact markings were on av-
erage slightly closer to the observer, shallower, closer in depth to
the base-shape, less elongated, more vertical, more compact, and
had a skeletal structure with smaller branching angles (22, 23).
We then trained a support vector machine (SVM) classifier to

predict the causal assignment of each region to either fabric or
contact, based on the feature values of the top seven most in-
formative features (Materials and Methods). The regions in each
stimulus were predicted from SVMs trained exclusively on the
other 11 stimuli, yielding 82.5% correct classifications across all
154 regions. Fig. 4G shows a t-distributed stochastic neighbor
embedding (tSNE) visualization of the contact and fabric regions
in a 2D projection of the feature space, with circles indicating
misclassifications. We can project the predicted labeled regions
back onto the stimuli, as in Fig. 4H for stimulus C5 (see SI Ap-
pendix, Fig. S2 for the complete set). In most cases, the predicted
causal assignments closely resemble those in the raw data, in-
dicating that a combination of relatively simple 2D and 3D
features are sufficient to capture the differences between contact
and fabric markings.
This analysis is not a process model of human visual causal

inference and does not reveal the specific cues that the visual
system uses. Indeed, the 3D features are not computed from the
image but derived from the ground-truth geometry. The selec-
tion of which features to consider was based on loose phenom-
enological intuition rather than derived from first principles.
Nevertheless, the fact that the 3D properties were the most in-
formative of the features we considered reinforces the fact that
the causal attribution likely involves rich representations of the
surface geometry, rather than simple 2D geometrical properties.
This leaves open the possibility that participants might explicitly
estimate the depths of both layers or may at least be able to
interpolate depths of the underlying surface when presented with
sparse indications of its relief at the regions of contact. To test
these possibilities, we performed a third experiment.

Experiment 3: Depth Reconstructions of Superimposed Surface
Layers. Although participants reported finding the painting task
highly intuitive, on its own it does not indicate whether their
representation of the draped objects was layered, with multiple
causes superimposed along a given line of sight. The findings
show that participants can categorize directly visible features by
their causes, but it remains unclear whether observers perceive
one surface hidden behind another. We reasoned that if partic-
ipants understand the composite shape as multilayered, they
should, at least to some extent, be able to provide independent
estimates of both surface reliefs simultaneously. Even if they
cannot directly perceive multiple depths at each point in the
image, the combination of causal attribution and depth-
interpolation mechanisms (24–33) might enable them to report
not only the shape of the overlying cloth but also (at least ap-
proximately) the shape of the underlying surface, even at loca-
tions where the surface is not in contact with the textile.
To test this, we performed an additional experiment in which

12 experienced observers were asked to draw the depth profile
shape of cross-sections through the draped stimuli for both the

A

B

C

D

Line 1 Line 2 Line 30.2
0.0
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0.8
1.0
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1.0

r Stimulus B
Fabric
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Line 1 Line 2 Line 30.2
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0.4
0.6
0.8
1.0

r Stimulus C

Fig. 5. (A) Experiment 3: stimulus C4, with green raster line indicating one
cross section whose depth profile participants were asked to estimate. (B)
Ground-truth depths along raster line (blue: underlying base shape; or-
ange: overlying textile). (C ) Mean responses across 12 participants, for the
same raster line (blue: estimated base shape depths; orange: estimated
textile depths). (D) Correlations between all ground-truth depths and
participants’ responses for all nine raster lines (blue: base shape; yellow:
fabric). Example stimulus is shown highlighted in yellow. For all stimuli, see
SI Appendix, Fig. S3.
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overlying textile surface and the underlying base shape simulta-
neously. The experiment was again conducted via a tablet com-
puter, and on each trial, participants viewed one of the
renderings with a given raster line highlighted. Their task was to
report the depth relief of both the overlying and underlying
surfaces along that raster line via a 2D contour that they could
draw and manipulate. Below the stimulus, a region was pre-
sented of the same width as the stimulus, within which they could
create and adjust contours representing the two surface reliefs
(fabric and base shape). Rather than freely drawing the shapes,
which participants find demanding and unintuitive, the contours
consisted of piecewise straight lines passing between control
points, which could be freely added, deleted, or moved by the
participant.
To combine data across participants, we normalized the re-

sponses for each raster line independently to the range of 0 to 1
and took the mean. An example mean response is shown in Fig. 5
for one raster line (see SI Appendix, Fig. S3 for the complete
dataset). For comparison, Fig. 5 shows the true depth profiles of
the two layers for the corresponding raster line. To evaluate
performance, we computed the correlations between partici-
pants’ responses and the true depth profiles for each of the two
surfaces along each raster line (Fig. 5D). The correlations were
significant in all cases. As is to be expected, in all cases, the
depth-profile responses for the overlying fabric were significantly
better correlated with the ground truth than for the underlying
surface. This presumably reflects the fact that the overlying
surface is in plain view, and thus conventional shape from
shading mechanisms can deliver information about surface relief,
whereas the structure of the hidden surface must be inferred
from the sparse regions of contact between textile and surface.
It is well known that this kind of task yields substantial metric

errors in reporting the depths of surfaces (34–36). This is
reflected in the errors in responses for the overlying surface, in
which no perceptual scission was required; participants simply
had to report the directly visible depth relief, as in previous
studies. Despite this, the results suggest that, at least qualita-
tively, participants can report the depth profiles of both visible
and hidden surfaces. This suggests that participants do un-
derstand the composite shape as multiple superimposed surfaces
and, when asked to, can separately report the depth profiles of
these layers. The fidelity of the reconstructions unlikely suffices
for a straightforward thresholding on estimated depth values as
the basis for painting responses in Experiments 1 and 2. We
suggest, that the processes of estimating depth profiles of both
layers and of assigning causes (fabric vs. contact) to visible sur-
face ridges are related but not one and the same. Specifically, we
suggest that having identified distinct causes, the depth re-
construction for the underlying surfaces relies on mechanisms
that group and interpolate the sparse depth signals visible at
contact locations.

General Discussion
Taken together, our results suggest that the representation of 3D
shape in the human visual system is richer than a map of local
surface properties, such as depth, orientation, or curvature
(37–43). Instead, shape perception also supports inferences
about other aspects of objects, including their material proper-
ties and causal origin. When an object is hidden behind opaque
cloth, it cannot be seen directly, yet it visibly influences the shape
of the overlying textile layer. We find that observers can distin-
guish between shape features that are due primarily to the hid-
den object and those that result from the textile organizing itself
into creases, folds and other structures. We call this the “Veiled
Virgin effect.” It is an important visual inference because, for
example, in order to grasp and handle an object successfully, we
need to know its compliance. Unsupported cloth tends to yield
and change shape under the slightest of touches, whereas when

the cloth is tightly bound around another object, we should an-
ticipate encountering considerably larger normal forces. How-
ever, the inference of the causal origin of shape features and the
structure of hidden objects is extremely challenging (6–16, 44).
Yildrim et al. (44) found that participants were good at

identifying which of several candidate objects was hidden under
simulated draped textile. They developed a computational model
based on approximate physical simulation and showed that it
outperformed a conventional deep neural network retrained to
recognize the hidden objects. On this basis, they suggested that
an internal “physics engine” (45, 46) may play a central role in
such tasks. However, it remains unclear if human observers can
or even need to perform an explicit mental physical simulation in
order to identify the causal origin of specific shape features, as
the participants in our experiments did.
There is also a close connection between our findings and

those of amodal completion—the subjective impression that a
surface continues behind an occluder that renders part of it in-
visible (24, 28, 29, 47–49). In particular, it has been noted that
certain conditions elicit volume completion (25–27), such that
hidden portions of objects seem to fill volumes in unseen space.
This can occur even in the absence of local occlusion cues (e.g.,
T-junctions and “relatable” contours; ref. 24) that are tradi-
tionally associated with amodal completion. However, there is
one important difference between our findings and amodal
completion: in the Veiled Virgin effect, the “completed” object is
entirely hidden from view. Instead of visible inducers initiating
an interpolation of surface structure across gaps in the sensory
signal, here, the only way to infer the presence of the hidden
surface is by detecting and interpreting the effects it has on the
shape of another surface. However, depth interpolation surely
plays a central role in the percept. In Experiment 3, when asked
explicitly to report the depth relief of the invisible surface, par-
ticipants likely relied primarily on interpolating between the
depths of the visible contact regions. The details of these depth-
interpolation processes should be investigated in more detail in
future studies.
We suggest that causal attribution is achieved, at least in part,

through recognition mechanisms. That is, because we are fa-
miliar with cloth, we can identify tell-tale signatures of its typical
behavior when it freely self-organizes under ambient ecological
effects, such as gravity, while deviations from typical shape fea-
tures are likely caused by a hidden object. Drapery exhibits dis-
tinctive geometrical features (50–52), and even though an
observer is unlikely to have not seen a given specific configura-
tion of folds or creases before, as an ensemble, they allow the
observer to recognize cloth. Indeed, recent studies indicate that
observers can use shape, motion, and the optical properties of
textiles to infer their mechanical characteristics (53–57). We
suggest that features of the shape of the cloth that do not con-
form to familiar types of ridge and fold structure could thereby
be identified as outliers that likely have a separate cause, i.e., a
hidden object that interrupts the cloth’s natural flow. In partic-
ular, when freely draping, materials that resist stretching tend to
organize themselves into shapes with (piecewise) low Gaussian
curvature as these are lower energy than doubly curved surfaces.
Thus, extended regions of double curvature (e.g., hills, dales, and
saddles) are likely indicators of a hidden object perturbing the
cloth (e.g., when the cloth is pulled taut over another object).
Moreover, depending on the density, stiffness, and other prop-
erties of the material, it will tend to exhibit certain curvatures or
frequencies of periodic structure (e.g., the ripples in curtains).
Gross deviations from these statistics, such as sharp corners,
could also be an important indicator of contact between the cloth
and a hidden object. It is important to note, however, that the
subjective impression of something hard hidden behind some-
thing soft is much more general than textile drapery. For ex-
ample, the protrusions caused by the knuckles, pelvis, or ribs
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under the skin clearly indicate the presence of the underlying
bone (we expect the region to feel firm if prodded), even though
there are none of the geometrical features that are typical of
drapery (58, 59). Thus, detecting hidden objects is clearly more
complex than just the detection of cloth features and deviations
therefrom.
Indeed, the cues underlying such inferences need substantial

additional research. We were able to build a classifier that could
predict participant judgments surprisingly well based on some
very simple 2D and 3D measurements. The fact that features
selected in an hoc manner performed well suggests that fabric
and contact regions in our stimulus set do display many differ-
ences. However, it is unlikely that the classifier would generalize
well to a broader range of stimuli with different base shapes and
textile properties, and it is highly unlikely that the visual system
uses these exact image and depth estimate measurements to
identify the causes of shape features. Identifying the geometrical
features predicted by physical models of textiles in images is
highly challenging. Learning-based approaches driven by much
larger training sets may yield some useful insights into more
general cues that humans might rely on.
The Veiled Virgin effect is also closely related to the perception

of transparency (3, 4, 17–21). One of the most striking aspects of
The Veiled Virgin sculpture is the impression that the face is seen
through a highly transparent diaphanous veil. However, it is
important to note that the perception of transparency itself is
orthogonal to the perception of multiple causal contributions to
observed shape. Our unfamiliar stimuli are rendered as perfectly
opaque and elicit no impression of transparency. Nevertheless,
what transparency and the Veiled Virgin effect share is the de-
composition of sensory signals into multiple causal layers (also
known as scission; refs. 3, 7, 17, and 18). In perceptual trans-
parency, a single retinal luminance or color is parsed into two
subjective layers: a background of a certain reflectance seen
through a transparent layer with a different reflectance and
opacity. How the visual system achieves this is still not fully
understood, although it involves comparing contrasts seen
through the transparent layer with those from the background
seen in plain view. In contrast, in the Veiled Virgin effect, to the
extent that there is any scission into causal layers, this is not a
separation of luminance or color but rather of geometry. This
seems like a much higher-level process. At some level, observers
certainly “understand” that the stimulus consists of multiple
layers, even if they cannot explicitly “perceive” both layers di-
rectly. Presumably, shape can only be segmented into causes
once the 3D relief has been estimated. However, the interaction
between causal inferences, depth interpolation, physical simu-
lation, and mental imagery remains poorly understood. Cer-
tainly, the question of how purely geometrical features in the
Veiled Virgin sculpture can elicit a perception of transparency in
the absence of any of the cues or conditions that are typically
associated with transparency perception (e.g., X-junctions, dis-
tortions of a background pattern; ref. 60) is perhaps as beguiling
as the sculpture itself.

Materials and Methods
All experiments were conducted in accordance with the Declaration of
Helsinki, and procedures were approved by the local ethics committees of the
Departments of Psychology at Giessen and Skidmore College. Prior to the
start of each experiment, participants were informed that they could ter-
minate the experiment at any time and gave consent for their data to be
published.

Experiment 1: Painting Task on The Veiled Virgin Sculpture. Two high-quality,
high-resolution images of The Veiled Virgin were supplied by the Pre-
sentation Sisters of Newfoundland Canada—home of the sculpture. The
images, depicting the sculpture from two different points of view, were
subject to cropping to highlight features at different scales. In all, each
image was presented as a whole-sculpture, full-face, nose-mouth, and eye

detail, resulting in eight total stimuli (SI Appendix, Fig. S1). Sixty subjects
were instructed to indicate areas on the sculpture where the fabric veil was
perceived as making contact with the underlying structure (i.e., the Virgin)
and where the fabric was seen as being separate and elevated away from
the underlying structure (fabric). Responses were collected using a bespoke
iPad & Apple Pencil application, written in Python (61), that provides a
traditional digital-painting interface. After brief instructions as to the task
and application interface, subjects were given the mostly unconstrained
ability to mark each of the two conditions—contact or fabric—on each im-
age. To allow measurement of perceptual ambiguity, the application only
displayed the subjects’ markings for a single condition at a time. This per-
mitted marking the same location as being seen as one of the interpreta-
tions, both simultaneously or neither. Finally, the application provided for
the unlimited ability to erase and toggle between the two marking
conditions.

Markings for each observer were analyzed by calculating two measures
from the fabric and contact stroke maps—namely profligacy and de-
cisiveness. Profligacy is defined as the proportion of possible pixels marked
and is calculated as the union of the fabric and contact maps:

P = N(Ifabric ∪ Icontact)=Nmax,

where N represents the total number of pixels marked, and Nmax is the total
number of pixels contained within the boundary contour of the stimulus
image. The binary stroke maps (Ifabric, Icontact) contain the observers’ indica-
tions of fabric ridges and fabric contact, respectively. Profligacy yields a
measurement of the overall assignment of causal information, regardless of
its source. Profligacy scores near 0 indicate very little of the stimulus was
marked as containing either fabric or contact information, while scores near
1 suggest that most pixels were judged as being part of the fabric, contact,
or both.

Decisiveness indicates how unique the fabric and contact assignments are.
It is computed as the inverse of the intersection of the two stroke maps:

D = 1-N Ifabric ∩ Icontact( )=Nmax.

Low decisiveness corresponds to higher ambiguity in observers’ markings
and vice versa.

Experiment 2: Painting Task on Unfamiliar Objects. Three physical, 3D surface
reliefs, measuring ∼1.0 × 0.75 × 0.25 m, were sculpted from cardboard and
chicken-wire using traditional maquette construction techniques. The
resulting forms provide varying amounts of geometric information ranging
from simple, linear structures to curvilinear ridges and valleys and peak and
dimple locations. Each surface was digitized using an iPad-based 3D laser
scanning device (62) and software customized for this specific scanning task.
The resulting geometry acts as the ground truth of underlying structure—
one that is not directly available from The Veiled Virgin sculpture since the
veil cloth and underlying geometry of the face are physically integrated and
inseparable in the sculpted depiction. The complete set of stimuli is repro-
duced in SI Appendix, Fig. S2 and is available for download from Zenodo
under DOI: 10.5281/zenodo.3766182.

Each underlying ground truth was then draped using a midgray batiste
cloth in an assortment of configurations. These draped surfaces were then
digitized using the same method as the underlying surfaces. Finally, the
resulting surfaces were rendered as ideal Lambertian surfaces using Ra-
diance (63). Rendering enabled precise control of viewpoint and lighting,
coregistration of depth data with pixel data, and the use of ideal opaque
surface reflectance to ensure the underlying surface was truly invisible.
This set of images acted as the stimuli for an experiment using the same
method, software, and analysis as Experiment 1. In addition, as we have
the exact measured geometry underlying the images presented to par-
ticipants, we could also test the extent to which participant’s judgments
varied with the depth offset between underlying relief and overlying
textile.

SVM Classifier. Analyses were conducted in Matlab. Mean contact and fabric
maps for each stimulus were preprocessed and segmented to identify regions
consistently labeled by participants as follows: mean values were Gaussian
blurred (sigma: 10 pixels), squared (to emphasize higher values), normalized
to the 0 to 1 range, and then binarized with a threshold of 0.3. The “imopen”
function was applied with a one-pixel disk structured element to remove
tiny regions. The resulting images were then segmented using “bwconn-
comp,” yielding a total of 154 connected component regions across all 24
images. From each region, the 24 candidate features in Table 1 were com-
puted using a combination of “regionprops” and Bayesian skeleton features
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using ShapeToolbox1 by Feldman and Singh (23) (https://ruccs.rutgers.edu/
images/ShapeToolbox1.0.zip). Code for extracting the skeleton summary
statistics reported by Wilder et al. (64) was developed by Yaniv Morgenstern.

Where features returned "not a number" (NaN) for a given region, these
were replaced with the mean value across all other (real-valued) regions. For
each feature, the range of values across all regions was normalized 0 to 1. The
top seven features in terms of absolute difference in the mean for dis-
tinguishing the contact and fabric distributions were used as the basis for
training the SVM classifier using “fitcsvm.” For each stimulus, a separate SVM
classifier was trained using the regions from the other 11 stimuli. Training
labels were binary values indicating whether a region came from a contact or
fabric map. For each SVM, Bayesian search (50 iterations) was used to identify
values of the following hyperparameters that yielded best cross-validated
performance on each training set: “BoxConstraint,” “KernelScale,” “Ker-
nelFunction,” “PolynomialOrder,” and “Standardize.” These typically yielded
second- or fourth-order polynomial kernels (thus, KernelScale was typically
undefined). BoxConstraint varied widely (mean: 50.25; range: 0.0014 to
548.82), and Standardize was “false” for seven and “true” for five of the runs.
Inferred causal attributions for the regions in each stimulus were then derived
using the “predict” function from the SVM trained on the other stimuli. The
tSNE visualization in Fig. 4G used the default parameters.

Experiment 3: Two-Layer Depth Profiles on Unfamiliar Objects. Stimuli con-
sisted of three of the rendered objects from Experiment 2 (base shape 1,
draping 10; base shape 2, draping 8; base shape 3, draping 4). For each of
these, three horizontal raster lines were selected in which there was sub-
stantial variation in the distance between the underlying and overlying
surfaces (SI Appendix, Fig. S3). Stimuli were presented on a 12-inch iPad Pro,
running a bespoke Python program (61) and responses made using an Apple
Pencil. Twelve experienced observers participated (unpaid). Observers were
unfamiliar with the stimuli and the purpose of the study. On each trial, the

rendering was presented, and a single horizontal raster line was highlighted
in blue. Directly below the stimulus was a response region with exactly the
same horizontal extent as the image. The participants’ task was to report the
perceived depth relief of the surface along the raster line by drawing a
graph of depths within in the response region. As free drawing is chal-
lenging, we used an interface whereby participants added, moved, and
(optionally) deleted control points, to shape a piecewise linear contour
representing the relief function. Control points could be moved in both x
and y directions. Importantly, participants were instructed to provide two
contours for each raster: one representing the relief of the overlying textile
(seen directly), and the other representing the relief of the hidden underling
surface. Participants could toggle which of the two contours was currently
editable via buttons labeled “drapery” and “object” in the interface,
but both contours were visible throughout each trial. Participants were
instructed to use the y axis to represent height above the ground plane, such
that higher y values indicated surface positions closer in depth to the ob-
servers. They were also instructed to anticipate the total range of responses
across both contours to ensure they did not run out of space within the
response area. Data from each raster line were normalized to the range of
0 to 1, preserving the relative heights of the drapery and object responses.
An example of the interface is shown in SI Appendix, Fig. S4.

Data Availability. Raw data have been deposited in Zenodo under DOI:
10.5281/zenodo.3766182.

ACKNOWLEDGMENTS. This research was supported by European Research
Council (ERC) Consolidator Award ERC-2015-CoG-682859 (“SHAPE”) (to
R.W.F.) and an Institute of International Education Fulbright Award (to
F.P.). We further thank Tom Eckert of Arizona State University, Wanita Bates
at Presentation Sisters, Betteanne Seabase, George Chakalos, Leah Kramberg,
and Maria Muttergottes for their assistance and advice.

1. S. Roncato, F. Roncato, The veiled statuary: A lesson from sculpture to vision Psy-

chology. Art Perception 1, 1–35 (2019).
2. F. Schmidt, The art of shaping materials. Art Perception 1, 1–27 (2019).
3. B. L. Anderson, A theory of illusory lightness and transparency in monocular and

binocular images: The role of contour junctions. Perception 26, 419–453 (1997).
4. B. L. Anderson, The role of occlusion in the perception of depth, lightness, and

opacity. Psychol. Rev. 110, 785–801 (2003).

5. H. Barrow, J. Tenenbaum, A. Hanson, E. Riseman, Recovering intrinsic scene charac-

teristics. Comput. Vision Syst. 2, 3–26 (1978).
6. F. Schmidt, R. W. Fleming, Identifying shape transformations from photographs of

real objects. PLoS One 13, e0202115 (2018).
7. F. Schmidt, F. Phillips, R. W. Fleming, Visual perception of shape-transforming pro-

cesses: ‘Shape scission’. Cognition 189, 167–180 (2019).
8. M. Leyton, Inferring causal history from shape. Cogn. Sci. 13, 357–387 (1989).

Table 1. Candidate features computed from image regions

Feature name Description Source

Area Area of region in pixels Regionprops: Area
Orientation* Orientation of best-fitting ellipse in degrees Regionprops: Orientation
Eccentricity* Ratio of principal axes of best fitting ellipse Regionprops: Eccentricity
Perimeter Perimeter of region in pixels Regionprops: Perimeter
Solidity* Ratio of filled area to area of convex hull of region Regionprops: Solidity
perimAreaRatio Ratio of perimeter to area of region Derived from regionprops: Perimeter and Area
Peripherality Euclidean distance of region’s center of mass from

center of image
Derived from regionprops: “Centroid”

meanDepths* Mean depth values of surface within region Regionprops: “MeanIntensity”
stdDepths* SD of depth values of surface within region Derived from regionprops: “PixelValue”
depthDifferences* Mean value of depth difference between overlying

and underlying surfaces within region
Regionprops: “MeanIntensity”

skelNumBranches Number of branches in skeleton of region Bayesian Skeleton of region computed using
ShapeToolbox1 (23); many of the features
are described in more detail by Wilder et al. (64)

skelMaxDepth Maximum graph depth of branches in skeleton
skelMeanDepth Mean graph depth of branches in skeleton
skelMeanBranchAngle* Mean angle of branch from parent
skelMeanBranchPointDist Mean distance along parent at which branch emerges
skelMeanRelBranchLength Mean length of branch relative to total length of skeleton
skelTotalAbsTurnAngle Total absolute turning angle of skeleton
skelTotalSignedTurnAngle Total signed turning angle of skeleton
skelMeanAbsTurnAngle Mean absolute turning angle along skeleton branches
skelStdAbsTurnAngle SD of absolute turning angles along skeleton branches
skelSkewAbsTurnAngle Skewness of absolute turning angles along branches
skelTotalLength Total length of skeleton
skelMeanBranchLength Mean branch length of skeleton
skelStdBranchLength SD of branch lengths along skeleton

*Only those indicated with an asterisk were used in the SVM classifier.

11742 | www.pnas.org/cgi/doi/10.1073/pnas.1917565117 Phillips and Fleming

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

Ju
ly

 2
9,

 2
02

1 

https://ruccs.rutgers.edu/images/ShapeToolbox1.0.zip
https://ruccs.rutgers.edu/images/ShapeToolbox1.0.zip
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1917565117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1917565117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1917565117


9. M. Leyton, Symmetry, Causality, Mind (MIT Press, Cambridge, MA, 1992).
10. M. Leyton, Process Grammar: The Basis of Morphology (Springer, 2012).
11. B. Pinna, New Gestalt principles of perceptual organization: An extension from

grouping to shape and meaning. Gestalt Theory 32, 11–78 (2010).
12. P. Spröte, R. W. Fleming, Concavities, Negative Parts and the Perception that Shapes

are “Complete”. J. Vision 13, 1–23 (2013).
13. P. Spröte, R. W. Fleming, Bent out of shape: The visual inference of non-rigid shape

transformations applied to objects. Vision Res. 126, 330–346 (2016).
14. P. Spröte, F. Schmidt, R. W. Fleming, Visual perception of shape altered by inferred

causal history. Sci. Rep. 6, 36245 (2016).
15. F. Schmidt, R. W. Fleming, Visual perception of complex shape-transforming pro-

cesses. Cognit. Psychol. 90, 48–70 (2016).
16. R. W. Fleming, F. Schmidt, Getting “fumpered”: Classifying objects by what has been

done to them. J. Vision 19, 1–12 (2019).
17. F. Metelli, An algebraic development of the theory of perceptual transparency. Er-

gonomics 13, 59–66 (1970).
18. F. Metelli, The perception of transparency. Sci. Am. 230, 90–98 (1974).
19. J. Beck, R. Ivry, On the role of figural organization in perceptual transparency. Per-

cept. Psychophys. 44, 585–594 (1988).
20. K. Nakayama, S. Shimojo, Experiencing and perceiving visual surfaces. Science 257,

1357–1363 (1992).
21. E. H. Adelson, Perceptual organization and the judgment of brightness. Science 262,

2042–2044 (1993).
22. P. Debevec, “Rendering synthetic objects into real scenes” in Proceedings of the 25th

Annual Conference on Computer Graphics and Interactive Techniques — SIGGRAPH
’98 (ACM Press, 1998), pp. 189–198.

23. J. Feldman, M. Singh, Bayesian estimation of the shape skeleton. Proc. Natl. Acad. Sci.
U.S.A. 103, 18014–18019 (2006).

24. P. J. Kellman, T. F. Shipley, A theory of visual interpolation in object perception.
Cognit. Psychol. 23, 141–221 (1991).

25. P. U. Tse, Illusory volumes from conformation. Perception 27, 977–992 (1998).
26. P. U. Tse, Volume completion. Cognit. Psychol. 39, 37–68 (1999).
27. M. K. Albert, P. U. Tse, The role of surface attraction in perceiving volumetric shape.

Perception 29, 409–420 (2000).
28. B. L. Anderson, M. Singh, R. W. Fleming, The interpolation of object and surface

structure. Cognit. Psychol. 44, 148–190 (2002).
29. P. J. Kellman, P. Garrigan, T. F. Shipley, Object interpolation in three dimensions.

Psychol. Rev. 112, 586–609 (2005).
30. A. Glennerster, S. P. McKee, M. D. Birch, Evidence for surface-based processing of

binocular disparity. Curr. Biol. 12, 825–828 (2002).
31. L. M. Wilcox, P. A. Duke, Spatial and temporal properties of stereoscopic surface in-

terpolation. Perception 34, 1325–1338 (2005).
32. M. A. Georgeson, T. A. Yates, A. J. Schofield, Depth propagation and surface con-

struction in 3-D vision. Vision Res. 49, 84–95 (2009).
33. A. A. Muryy, A. E. Welchman, A. Blake, R. W. Fleming, Specular reflections and the

estimation of shape from binocular disparity. Proc. Natl. Acad. Sci. U.S.A. 110,
2413–2418 (2013).

34. J. J. Koenderink, A. J. van Doorn, A. M. L. Kappers, J. T. Todd, Ambiguity and the
‘mental eye’ in pictorial relief. Perception 30, 431–448 (2001).

35. J. T. Todd, A. H. J. Oomes, J. J. Koenderink, A. M. L. Kappers, The perception of doubly
curved surfaces from anisotropic textures. Psychol. Sci. 15, 40–46 (2004).

36. J. T. Todd, The visual perception of 3D shape. Trends Cogn. Sci. 8, 115–121 (2004).
37. D. Marr, Vision (MIT Press, 2010).
38. K. A. Stevens, A. Brookes, Probing depth in monocular images. Biol. Cybern. 56,

355–366 (1987).

39. H. H. Bülthoff, H. A. Mallot, Integration of depth modules: Stereo and shading. J. Opt.
Soc. Am. A 5, 1749–1758 (1988).

40. B. Rogers, R. Cagenello, Disparity curvature and the perception of three-dimensional
surfaces. Nature 339, 135–137 (1989).

41. J. J. Koenderink, A. J. van Doorn, A. M. Kappers, Surface perception in pictures.
Percept. Psychophys. 52, 487–496 (1992).

42. A. Johnston, P. J. Passmore, Independent encoding of surface orientation and surface
curvature. Vision Res. 34, 3005–3012 (1994).

43. R. W. Fleming, D. Holtmann-Rice, H. H. Bülthoff, Estimation of 3D shape from image
orientations. Proc. Natl. Acad. Sci. U.S.A. 108, 20438–20443 (2011).

44. I. Yildirim, M. H. Siegel, J. B. Tenenbaum, “Integrating physical reasoning and visual
object recognition for fully occluded scene interpretation” in Proceedings of the 38th
Annual Conference of the Cognitive Science Society (Cognitive Science Society, 2016),
pp. 1265–1270.

45. P. W. Battaglia, J. B. Hamrick, J. B. Tenenbaum, Simulation as an engine of physical
scene understanding. Proc. Natl. Acad. Sci. U.S.A. 110, 18327–18332 (2013).

46. C. J. Bates, I. Yildirim, J. B. Tenenbaum, P. Battaglia, Modeling human intuitions about
liquid flow with particle-based simulation. PLOS Comput. Biol. 15, e1007210 (2019).

47. A. Michotte, J. de Clerck, Structures perceptives circulaires correspondant à des for-
mes géométriques angulaires. Annee Psychol. 50, 305–326 (1949).

48. G. Kanizsa, Subjective contours. Sci. Am. 234, 48–52 (1976).
49. G. Kanizsa, G. Kanizsa, Organization in Vision: Essays on Gestalt Perception (Praeger,

New York, NY, 1979).
50. J. Amirbayat, J. W. S. Hearle, The anatomy of buckling of textile fabrics: Drape and

conformability. J. Textil. Inst. 80, 51–70 (1989).
51. E. Cerda, L. Mahadevan, Geometry and physics of wrinkling. Phys. Rev. Lett. 90,

074302 (2003).
52. E. Cerda, L. Mahadevan, J. M. Pasini, The elements of draping. Proc. Natl. Acad. Sci.

U.S.A. 101, 1806–1810 (2004).
53. K. L. Bouman, B. Xiao, P. Battaglia, W. T. Freeman, “Estimating the material prop-

erties of fabric from video” in IEEE International Conference on Computer Vision
(IEEE, 2013), pp. 1984–1991.

54. C. Aliaga, C. O’Sullivan, D. Gutierrez, R. Tamstorf, “Sackcloth or silk?” in Proceedings
of the ACM SIGGRAPH Symposium on Applied Perception—SAP ’15 (ACM Press,
2015), pp. 41–46.

55. L. Sigal et al., A perceptual control space for garment simulation. ACM Trans. Graphics
34, 1–10 (2015).

56. W. Bi, B. Xiao, “Perceptual constancy of mechanical properties of cloth under varia-
tion of external forces” in Proceedings of the ACM Symposium on Applied
Perception—SAP ’16 (ACM Press, 2016), pp. 19–23.

57. W. Bi, P. Jin, H. Nienborg, B. Xiao, Estimating mechanical properties of cloth from
videos using dense motion trajectories: Human psychophysics and machine learning.
J. Vis. 18, 12 (2018).

58. J. Koenderink, Skin Deep Only (De Clootcrans Press, Utrecht, The Netherlands, 2015).
59. J. Koenderink, The Way of the Eye (De Clootcrans Press, Utrecht, The Netherlands,

2015).
60. R. W. Fleming, F. Jäkel, L. T. Maloney, Visual perception of thick transparent mate-

rials. Psychol. Sci. 22, 812–820 (2011).
61. O. M. Z. Software, Pythonista. https://omz-software.com/pythonista. Accessed 1 May

2019.
62. Occipital, Structure Sensor. https://structure.io. Accessed 1 May 2019.
63. G. J. Ward, “The RADIANCE lighting simulation and rendering system” in Proceedings

of the 21st Annual Conference on Computer Graphics and Interactive Techniques—
SIGGRAPH ’94 (ACM Press, 1994), pp. 459–472.

64. J. Wilder, J. Feldman, M. Singh, Superordinate shape classification using natural shape
statistics. Cognition 119, 325–340 (2011).

Phillips and Fleming PNAS | May 26, 2020 | vol. 117 | no. 21 | 11743

N
EU

RO
SC

IE
N
CE

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

Ju
ly

 2
9,

 2
02

1 

https://omz-software.com/pythonista
https://structure.io

